Mengenal "Dark Energy", Sudahkah Manusia Menemukannya?

RN Dahlan

Pernahkah Anda mendengar Dark Energy atau Dark Matter? Materi gelap alias dark matter merupakan materi yang membuat galaksi dan dan seisinya tetap pada sumbunya. Tanpa dark matter, galaksi akan berantakan. 

Dark Matter sendiri merupakan materi yang jumlahnya lima kali lebih banyak dibandingkan dengan materi biasa. Dan diperkirakan, seperempat dari alam semesta merupakan materi gelap. Namun apakah manusia sudah menemukan materi gelap dan dark energy yang dimilikinya?


Sebuah studi baru yang dipimpin oleh para peneliti di University of Cambridge dan dilaporkan dalam jurnal Physical Review D, menunjukkan teori yang sangat menarik.


Menurut para peneliti, beberapa hasil riset yang tidak dapat dijelaskan dari eksperimen Xenon1T di Italia mungkin disebabkan oleh adanya energi gelap atau Dark Energy yang ada di alam semesta dan bukan materi gelap yang dirancang oleh eksperimen tersebut.

Dalam studi, mereka membangun model fisik untuk membantu menjelaskan hasil dari penelitian mereka, yang mungkin berasal dari partikel energi gelap yang dihasilkan di wilayah Matahari dengan medan magnet yang kuat.

Percobaan lebih lanjut di masa depan masih akan diperlukan untuk mengkonfirmasi penjelasan ini. Namun para peneliti mengatakan, studi mereka bisa menjadi langkah penting menuju deteksi langsung energi gelap.

Seperti diketahui, segala sesuatu yang dapat dilihat mata kita di langit dan di dunia kita sehari-hari dari bulan hingga galaksi, dari semut hingga paus biru, materinya hanya mencakup kurang dari lima persen alam semesta. Sisanya gelap. Sekitar 27% adalah materi gelap atau dark matter.


Artinya, bisa dikatakan bahwa materi gelap ini adalah kekuatan tak terlihat yang menyatukan galaksi dan jaring kosmik. Sementara 68% adalah energi gelap atau dark energy, yang menyebabkan alam semesta mengembang dengan kecepatan yang dipercepat.

"Meskipun kedua komponen tersebut tidak terlihat, kita tahu lebih banyak tentang materi gelap, sejak keberadaannya disarankan pada awal tahun 1920-an, sementara energi gelap tidak ditemukan sampai tahun 1998," kata Dr. Sunny Vagnozzi dari Kavli Institute for Cosmology di Cambridge, Inggris, peneliti yang terlibat dalam studi.

"Eksperimen skala besar seperti Xenon1T telah dirancang untuk mendeteksi materi gelap secara langsung, dengan mencari tanda-tanda materi gelap 'menabrak' materi biasa, tetapi energi gelap bahkan lebih sulit dipahami," sebut Vagnozzi.

Untuk mendeteksi energi gelap, para ilmuwan umumnya mencari interaksi gravitasi: cara gravitasi menarik benda-benda di sekitarnya. Dan pada skala terbesar, efek gravitasi energi gelap bersifat tolak-menolak, menarik benda-benda menjauh satu sama lain dan membuat ekspansi semesta semakin cepat.

Sekitar setahun yang lalu, eksperimen Xenon1T melaporkan sinyal yang tidak diharapkan, atau kelebihan, di atas latar belakang yang diharapkan. Sinyal ini kemudian dikaitkan dengan energi gelap, bukan materi gelap yang awalnya dirancang untuk dideteksi oleh eksperimen tersebut.

Pada saat itu, hipotesis paling populer untuk kelebihan itu adalah axion, partikel yang sangat ringan dan diproduksi di Matahari. Namun, penjelasan ini tidak sesuai dengan pengamatan, karena jumlah aksis yang diperlukan untuk menjelaskan sinyal Xenon1T akan secara drastis mengubah evolusi bintang yang jauh lebih berat daripada Matahari, bertentangan dengan apa yang kita amati.

Kita masih jauh dari sepenuhnya memahami apa itu energi gelap, tetapi sebagian besar model fisik untuk energi gelap akan mengarah pada keberadaan apa yang disebut gaya kelima. 

Seperti diketahui, ada empat gaya fundamental di alam semesta, dan segala sesuatu yang tidak dapat dijelaskan oleh salah satu gaya ini kadang-kadang disebut sebagai hasil dari gaya kelima yang tidak diketahui.

Namun, kita tahu bahwa teori gravitasi Einstein bekerja sangat baik di alam semesta terutama yang kita pijaki sekarang. Oleh karena itu, gaya kelima apa pun yang terkait dengan energi gelap tidak diinginkan dan harus 'tersembunyi' atau 'disaring' jika menyangkut skala kecil, dan hanya dapat beroperasi pada skala terbesar di mana teori gravitasi Einstein gagal menjelaskan percepatan Alam Semesta. 

Untuk menyembunyikan kekuatan kelima, banyak model energi gelap dilengkapi dengan apa yang disebut mekanisme penyaringan, yang secara dinamis menyembunyikan kekuatan kelima.


Baca juga:


Vagnozzi dan rekan penulisnya membangun model fisik, yang menggunakan jenis mekanisme penyaringan yang dikenal sebagai penyaringan bunglon, untuk menunjukkan bahwa partikel energi gelap yang dihasilkan di medan magnet kuat Matahari dapat menjelaskan kelebihan Xenon1T.

Model penyaringan bunglon yang mereka ciptakan ini memungkinkan peneliti memisahkan apa yang terjadi di Alam Semesta lokal yang sangat padat dari semesta yang memiliki kepadatan yang sangat rendah.

Para peneliti menggunakan model mereka untuk menunjukkan apa yang akan terjadi di detektor jika energi gelap dihasilkan di wilayah tertentu Matahari, yang disebut tachocline, di mana medan magnet sangat kuat.


"Sangat mengejutkan bahwa kelebihan ini pada prinsipnya disebabkan oleh energi gelap daripada materi gelap," ungkap Vagnozzi. "Ketika semuanya menyatu seperti itu, itu benar-benar istimewa," sebutnya.

Perhitungan mereka menunjukkan bahwa eksperimen seperti Xenon1T, yang dirancang untuk mendeteksi materi gelap, juga dapat digunakan untuk mendeteksi energi gelap. Namun, kelebihan aslinya masih perlu dikonfirmasi secara meyakinkan.

Jika kelebihannya adalah hasil dari energi gelap, peningkatan yang akan datang untuk eksperimen Xenon1T, serta eksperimen mengejar tujuan serupa seperti LUX-Zeplin dan PandaX-xT berhasil dipecahkan, artinya manusia kemungkinan besar dapat mendeteksi energi gelap secara langsung dalam dekade mendatang.